
Low-Risk

low-risk code

Medium-Risk

medium-risk code

High-Risk

high-risk code

SURFRewa rd

Contract DeployedOnbscscan.com

0x53f1e15ed3Cea8c1d4Adc4BE2DDE4BA33715a922

Disclaimer AUDITBLOCK is not responsible for any financial losses. Nothing in this contract audit

is financial advice, please do your own research.

SURF Reward
v0.8.19+commit.7dd6d404

AudiTBlock

https://bscscan.com/address/0x53f1e15ed3Cea8c1d4Adc4BE2DDE4BA33715a922#code

 Tokenomics

 Bscscan.com

 Source Code

 AudiTBlock completes audit phases to perform an audit based on the following

smart contract:

 https://bscscan.com/address/0x53f1e15ed3Cea8c1d4Adc4BE2DDE4BA33715a922#code

Disclaimer

AudiTBlock is not responsible if a project turns out to be a scam, rug-pull or honeypot. We only provide

a detailed analysis for your own research.

AudiTBlock is not responsible for any financial losses. Nothing in this contract audit is financial

advice, please do your ownresearch.

The information provided in this audit is for informational purposes only and should not be considered

investment advice. We does not endorse, recommend, support or suggest to invest in any project.

AudiTBlock can not be held responsible for when a project turns out to be a rug-pull, honeypot or scam.

Snapshot 1.0

INFO:Detectors:

SURFReward.internalSwap(uint256)

(contracts/contract.sol#380-406) sends eth to arbitrary user

Dangerous calls:

- (success,None) = marketingAddress.call{gas:

35000,value: address(this).balance}()

(contracts/contract.sol#404)

Reference: https://github.com/crytic/slither/wiki/Detector-

Documentation#functions-that-send-ether-to-arbitrary-

destinations

INFO:Detectors:

Reentrancy in

SURFReward._transfer(address,address,uint256)

(contracts/contract.sol#313-344):

External calls:

- internalSwap(contractTokenBalance)

(contracts/contract.sol#328)

-

swapRouter.swapExactTokensForETHSupportingFeeOnTran

sferTokens(contractTokenBalance,0,path,address(this),block.t

imestamp) (contracts/contract.sol#391-399)

- (success,None) = marketingAddress.call{gas:

35000,value: address(this).balance}()

(contracts/contract.sol#404)

External calls sending eth:

- internalSwap(contractTokenBalance)

(contracts/contract.sol#328)

- (success,None) = marketingAddress.call{gas:

35000,value: address(this).balance}()

(contracts/contract.sol#404)

State variables written after the call(s):

https://github.com/crytic/slither/wiki/Detector-Documentation#functions-that-send-ether-to-arbitrary-destinations

Snapshot 1.1

SURFReward.takeTaxes(address,bool,bool,uint256)

(contracts/contract.sol#365-377)

- balance[to] += amountAfterFee

(contracts/contract.sol#339)

SURFReward.balance (contracts/contract.sol#169) can be

used in cross function reentrancies:

- SURFReward._transfer(address,address,uint256)

(contracts/contract.sol#313-344)

- SURFReward.balance (contracts/contract.sol#169)

- SURFReward.balanceOf(address)

(contracts/contract.sol#159-161)

- SURFReward.constructor() (contracts/contract.sol#205-

231)

- SURFReward.takeTaxes(address,bool,bool,uint256)

(contracts/contract.sol#365-377)

- amountAfterFee =

takeTaxes(from,is_buy(from,to),is_sell(from,to),amount)

(contracts/contract.sol#338)

- balance[address(this)] += feeAmount

(contracts/contract.sol#372)

SURFReward.balance (contracts/contract.sol#169) can be

used in cross function reentrancies:

- SURFReward._transfer(address,address,uint256)

(contracts/contract.sol#313-344)

- SURFReward.balance (contracts/contract.sol#169)

- SURFReward.balanceOf(address)

(contracts/contract.sol#159-161)

- SURFReward.constructor() (contracts/contract.sol#205-

231)

- SURFReward.takeTaxes(address,bool,bool,uint256)

(contracts/contract.sol#365-377)

Reference: https://github.com/crytic/slither/wiki/Detector-

Documentation#reentrancy-vulnerabilities

https://github.com/crytic/slither/wiki/Detector-Documentation#reentrancy-vulnerabilities

File Fingerprint (MD5

Contracts/SURFReward.sol d01b3c458bd445222081eca174eeee89

Tested Contract Files

The following are the MD5 hashes of the reviewed files. A file with a different
MD5 hash has been modified, intentionally or otherwise,
after the security review. You are cautioned that a different MD5 hash could be
(but is not necessarily) an indication of a changed
condition or potential vulnerability that was not within the scope of the review

Dependency / Import Path Source Sha1 Hash

Contracts/Context, Ownable, IERC20 a32f9e7070451351211ad2c66
48f3824591c21c4

Used Code from other Frameworks/Smart Contracts (direct
imports)

SURFReward.changeBuyFee(uint32) (contracts/contract.sol#352-354) should emit an

event for:

- buyfee = _buyfee (contracts/contract.sol#353)

SURFReward.changeSellFee(uint32) (contracts/contract.sol#356-358) should emit an

event for:

- sellfee = _sellfee (contracts/contract.sol#357)

SURFReward.changeTransferFee(uint32) (contracts/contract.sol#360-362) should emit

an event for:

- transferfee = _transferfee (contracts/contract.sol#361)

Reference: https://github.com/crytic/slither/wiki/Detector-Documentation#missing-

events-arithmetic

Reentrancy in SURFReward._transfer(address,address,uint256)

(contracts/contract.sol#313-344):

External calls:

- internalSwap(contractTokenBalance) (contracts/contract.sol#328)

-

swapRouter.swapExactTokensForETHSupportingFeeOnTransferTokens(contractToken

Balance,0,path,address(this),block.timestamp) (contracts/contract.sol#391-399)

- (success,None) = marketingAddress.call{gas: 35000,value:

address(this).balance}() (contracts/contract.sol#404)

External calls sending eth:

- internalSwap(contractTokenBalance) (contracts/contract.sol#328)

- (success,None) = marketingAddress.call{gas: 35000,value:

address(this).balance}() (contracts/contract.sol#404)

Event emitted after the call(s):

- Transfer(from,address(this),feeAmount) (contracts/contract.sol#373)

- amountAfterFee = takeTaxes(from,is_buy(from,to),is_sell(from,to),amount)

(contracts/contract.sol#338)

- Transfer(from,to,amountAfterFee) (contracts/contract.sol#339)

Reference: https://github.com/crytic/slither/wiki/Detector-Documentation#reentrancy-

vulnerabilities-3

INFO:Detectors:

Context._msgData() (contracts/contract.sol#19-22) is never used and should be

removed

SURFReward.is_transfer(address,address) (contracts/contract.sol#279-282) is never

used and should be removed

Reference: https://github.com/crytic/slither/wiki/Detector-Documentation#dead-code

Snapshot 2.0

https://github.com/crytic/slither/wiki/Detector-Documentation#missing-events-arithmetic
https://github.com/crytic/slither/wiki/Detector-Documentation#reentrancy-vulnerabilities-3
https://github.com/crytic/slither/wiki/Detector-Documentation#dead-code

INFO: Detectors

Pragma version=0.8.19 (contracts/contract.sol#8) necessitates a version too recent to

be trusted. Consider deploying with 0.8.18.

solc-0.8.19 is not recommended for deployment

Reference: https://github.com/crytic/slither/wiki/Detector-Documentation#incorrect-

versions-of-solidity

INFO: Detectors:

The redundant expression "this (contracts/contract.sol#20)" inContext

(contracts/contract.sol#11-23)

Reference: https://github.com/crytic/slither/wiki/Detector-Documentation#redundant-

statements

INFO: Detectors:

Variable

IRouter01.addLiquidity(address,address,uint256,uint256,uint256,uint256,address,uint25

6).amountADesired (contracts/contract.sol#86) is too similar to

IRouter01.addLiquidity(address,address,uint256,uint256,uint256,uint256,address,uint25

6).amountBDesired (contracts/contract.sol#87)

Reference: https://github.com/crytic/slither/wiki/Detector-Documentation#variable-

names-too-similar

INFO: Detectors:

SURFReward.swapRouter (contracts/contract.sol#181) should be immutable

Reference: https://github.com/crytic/slither/wiki/Detector-Documentation#state-

variables-that-could-be-declared-immutable

Results: analyzed (8 contracts with 85 detectors), 13 result(s) found

Snapshot 2.1

https://github.com/crytic/slither/wiki/Detector-Documentation#incorrect-versions-of-solidity
https://github.com/crytic/slither/wiki/Detector-Documentation#redundant-statements
https://github.com/crytic/slither/wiki/Detector-Documentation#variable-names-too-similar
https://github.com/crytic/slither/wiki/Detector-Documentation#state-variables-that-could-be-declared-immutable

Progress: Starting
Contract: SURFReward

✓ Check winning proposal
✓ Check winning proposal with return value
✓ Before all
✓ Check success
✓ Check success2
✓ Check sender and value

PASS✅ ✅ Tested

Result for tests Passed:
0Time Taken: 0.23s

SOLIDITY UNIT TESTING

Manual and Automated Vulnerability Test

CRITICAL ISSUES
During the audit, AudiTBlock experts found 0 medium Critical
issues in the code of the smart contract.

HIGH ISSUES
During the audit, AudiTBlock experts found 0 High issues in the
code of the smart contract.

MEDIUM ISSUES
During the audit, AudiTBlock experts found 1 Medium issue in the
code of the smart contract.

LOW ISSUES
During the audit, AudiTBlock experts found 3 Low issues in the
code of the smart contract.

INFORMATIONAL ISSUES
During the audit, AuditBlock experts
found 1 Informational issues in the code of the smart contract.

I
D

T
i
t
l
e

T
est

Res

ult

SWC-
131

Presence of unused variables

CWE-1164: Irrelevant Code #✅$"

SWC-
130

Right-To-Left-
Override control

character (U+202E) CWE-451: User Interface (UI) Misrepresentation of Critical
Information "$#✅

SWC-
129

Typographical Error

CWE-480: Use of Incorrect Operator "✅#$

SWC-
128

DoS With Block Gas Limit

CWE-400: Uncontrolled Resource Consumption "#$✅

SWC-
127

Arbitrary Jump with
Function TypeVariable

CWE-695: Use of Low-Level Functionality
"#$✅

SWC-
125

Incorrect Inheritance Order

CWE-696: Incorrect Behavior Order $✅#"

SWC-
124

Write to Arbitrary Storage
Location CWE-123: Write-what-where Condition "✅#$

SWC-
123

Requirement Violation

CWE-573: Improper Following of Specification by Caller $✅#"

I
D

T
i
t
l
e

T
est

Res

ult

SWC-
113

DoS with Failed Call

CWE-703: Improper Check or Handling of Exceptional Conditions $✅#"

SWC-
112

Delegatecall to Untrusted
Callee CWE-829: Inclusion of Functionality from Untrusted Control

Sphere
"#$✅

SWC-
111

Use of
Deprecated

Solidity

Functions
CWE-477: Use of Obsolete Function

"✅$#

SWC-
110

Assert Violation

CWE-670: Always-Incorrect Control Flow Implementation $✅#"

SWC-
109

Uninitialized Storage Pointer

CWE-824: Access of Uninitialized Pointer "✅$#

SWC-
108

State Variable Default Visibility

CWE-710: Improper Adherence to Coding Standards $✅#"

SWC-
107

Reentrancy

CWE-841: Improper Enforcement of Behavioral Workflow "#$✅

SWC-
106

Unprotected

SELFDESTRUCT
Instruction CWE-284: Improper Access Control

"$#✅

SWC-
105

Unprotected Ether Withdrawal

CWE-284: Improper Access Control "$#✅

SWC-
104

Unchecked Call Return Value

CWE-252: Unchecked Return Value "#$✅

SWC Attacks

Owner privileges

Verify Claims

Status: Tested Owner verification ✅

Status: Tested 1 and Function verified ✅

Status: Tested 2 and interfaces verified ✅

Status: Tested 3 and Erc20 verified ✅

Status: Tested 4 and context verified ✅

Status: verified ✅

Executive Summary

Two (2) independent AuditBlock experts performed an unbiased and isolated audit of
the smart contract. The final debriefs

The overall code quality is good and not overloaded with unnecessary functions,
these is greatly

benefiting the security of the contract. It correctly implemented widely used and
reviewed contracts he main goal of the audit was to verify the claims regarding the
security of the smart contract and the claims inside the scope of work.

During the audit, no issues were found after the manual and automated security
testing.

Deployed On Bscscan.com

VERIFIED✔

https://bscscan.com/address/0x53f1e15ed3Cea8c1d4Adc4BE2DDE4BA33715a922#code

https://bscscan.com/address/0x53f1e15ed3Cea8c1d4Adc4BE2DDE4BA33715a922#code

